Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 202
1.
Acta Biomater ; 180: 295-307, 2024 May.
Article En | MEDLINE | ID: mdl-38642787

Kidney regeneration is hindered by the limited pool of intrinsic reparative cells. Advanced therapies targeting renal regeneration have the potential to alleviate the clinical and financial burdens associated with kidney disease. Delivery systems for cells, extracellular vesicles, or growth factors aimed at enhancing regeneration can benefit from vehicles enabling targeted delivery and controlled release. Hydrogels, optimized to carry biological cargo while promoting regeneration, have emerged as promising candidates for this purpose. This study aims to develop a hydrogel from decellularized kidney extracellular matrix (DKECM) and explore its biocompatibility as a biomaterial for renal regeneration. The resulting hydrogel crosslinks with temperature and exhibits a high concentration of extracellular matrix. The decellularization process efficiently removes detergent residues, yielding a pathogen-free biomaterial that is non-hemolytic and devoid of α-gal epitope. Upon interaction with macrophages, the hydrogel induces differentiation into both pro-inflammatory and anti-inflammatory phenotypes, suggesting an adequate balance to promote biomaterial functionality in vivo. Renal progenitor cells encapsulated in the DKECM hydrogel demonstrate higher viability and proliferation than in commercial collagen-I hydrogels, while also expressing tubular cells and podocyte markers in long-term culture. Overall, the injectable biomaterial derived from porcine DKECM is anticipated to elicit minimal host reaction while fostering progenitor cell bioactivity, offering a potential avenue for enhancing renal regeneration in clinical settings. STATEMENT OF SIGNIFICANCE: The quest to improve treatments for kidney disease is crucial, given the challenges faced by patients on dialysis or waiting for transplants. Exciting new therapies combining biomaterials with cells can revolutionize kidney repair. In this study, researchers created a hydrogel from pig kidney. This gel could be used to deliver cells and other substances that help in kidney regeneration. Despite coming from pigs, it's safe for use in humans, with no harmful substances and reduced risk of immune reactions. Importantly, it promotes a balanced healing response in the body. This research not only advances our knowledge of kidney repair but also offers hope for more effective treatments for kidney diseases.


Decellularized Extracellular Matrix , Hydrogels , Kidney , Tissue Engineering , Hydrogels/chemistry , Animals , Tissue Engineering/methods , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Swine , Extracellular Matrix/chemistry , Humans , Stem Cells/cytology , Stem Cells/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
2.
Kidney Blood Press Res ; 49(1): 258-265, 2024.
Article En | MEDLINE | ID: mdl-38527442

BACKGROUND: Chronic kidney disease affects 10% of the world population, and it is associated with progression to end-stage kidney disease and increased morbidity and mortality. The advent of multi-omics technologies has expanded our knowledge on the complexity of kidney diseases, revealing their frequent genetic etiology, particularly in children and young subjects. Genetic heterogeneity and drug screening require patient-derived disease models to establish a correct diagnosis and evaluate new potential treatments and outcomes. SUMMARY: Patient-derived renal progenitors can be isolated from urine to set up proper disease modeling. This strategy allows to make diagnosis of genetic kidney disease in patients carrying unknown significance variants or uncover variants missed from peripheral blood analysis. Furthermore, urinary-derived tubuloids obtained from renal progenitors of patients appear to be potentially valuable for modeling kidney diseases to test ex vivo treatment efficacy or to develop new therapeutic approaches. Finally, renal progenitors derived from urine can provide insights into acute kidney injury and predict kidney function recovery and outcome. KEY MESSAGES: Renal progenitors derived from urine are a promising new noninvasive and easy-to-handle tool, which improves the rate of diagnosis and the therapeutic choice, paving the way toward a personalized healthcare.


Precision Medicine , Stem Cells , Humans , Kidney Diseases/diagnosis , Kidney Diseases/urine , Kidney/pathology , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/urine , Urine/cytology
3.
Kidney Int ; 105(4): 709-716, 2024 Apr.
Article En | MEDLINE | ID: mdl-38199322

Tubular epithelial cells (TCs) compose the majority of kidney parenchyma and play fundamental roles in maintaining homeostasis. Like other tissues, mostly immature TC with progenitor capabilities are able to replace TC lost during injury via clonal expansion and differentiation. In contrast, differentiated TC lack this capacity. However, as the kidney is frequently exposed to toxic injuries, evolution positively selected a response program that endows differentiated TC to maintain residual kidney function during kidney injury. Recently, we and others have described polyploidization of differentiated TC, a mechanism to augment the function of remnant TC after injury by rapid hypertrophy. Polyploidy is a condition characterized by >2 complete sets of chromosomes. Polyploid cells often display an increased functional capacity and are generally more resilient to stress as evidenced by being conserved across many plants and eukaryote species from flies to mammals. Here, we discuss the occurrence of TC polyploidy in different contexts and conditions and how this integrates into existing concepts of kidney cell responses to injury. Collectively, we aim at stimulating the acquisition of novel knowledge in the kidney field as well as accelerating the translation of this basic response mechanism to the clinical sphere.


Epithelial Cells , Hepatocytes , Animals , Cell Differentiation , Polyploidy , Kidney , Mammals
4.
Stem Cell Res Ther ; 15(1): 20, 2024 01 17.
Article En | MEDLINE | ID: mdl-38233961

BACKGROUND: The glomerulus is a highly complex system, composed of different interdependent cell types that are subjected to various mechanical stimuli. These stimuli regulate multiple cellular functions, and changes in these functions may contribute to tissue damage and disease progression. To date, our understanding of the mechanobiology of glomerular cells is limited, with most research focused on the adaptive response of podocytes. However, it is crucial to recognize the interdependence between podocytes and parietal epithelial cells, in particular with the progenitor subset, as it plays a critical role in various manifestations of glomerular diseases. This highlights the necessity to implement the analysis of the effects of mechanical stress on renal progenitor cells. METHODS: Microgravity, modeled by Rotary Cell Culture System, has been employed as a system to investigate how renal progenitor cells respond to alterations in the mechanical cues within their microenvironment. Changes in cell phenotype, cytoskeleton organization, cell proliferation, cell adhesion and cell capacity for differentiation into podocytes were analyzed. RESULTS: In modeled microgravity conditions, renal progenitor cells showed altered cytoskeleton and focal adhesion organization associated with a reduction in cell proliferation, cell adhesion and spreading capacity. Moreover, mechanical forces appeared to be essential for renal progenitor differentiation into podocytes. Indeed, when renal progenitors were exposed to a differentiative agent in modeled microgravity conditions, it impaired the acquisition of a complex podocyte-like F-actin cytoskeleton and the expression of specific podocyte markers, such as nephrin and nestin. Importantly, the stabilization of the cytoskeleton with a calcineurin inhibitor, cyclosporine A, rescued the differentiation of renal progenitor cells into podocytes in modeled microgravity conditions. CONCLUSIONS: Alterations in the organization of the renal progenitor cytoskeleton due to unloading conditions negatively affect the regenerative capacity of these cells. These findings strengthen the concept that changes in mechanical cues can initiate a pathophysiological process in the glomerulus, not only altering podocyte actin cytoskeleton, but also extending the detrimental effect to the renal progenitor population. This underscores the significance of the cytoskeleton as a druggable target for kidney diseases.


Kidney Diseases , Podocytes , Weightlessness , Humans , Cytoskeleton/metabolism , Kidney , Kidney Diseases/metabolism , Stem Cells/metabolism
5.
Clin Kidney J ; 16(10): 1600-1611, 2023 Oct.
Article En | MEDLINE | ID: mdl-37779846

Chronic kidney disease (CKD) is a major healthcare issue worldwide. However, the prevalence of pediatric CKD has never been systematically assessed and consistent information is lacking in this population. The current definition of CKD is based on glomerular filtration rate (GFR) and the extent of albuminuria. Given the physiological age-related modification of GFR in the first years of life, the definition of CKD is challenging per se in the pediatric population, resulting in high risk of underdiagnosis in this population, treatment delays and untailored clinical management. The advent and spreading of massive-parallel sequencing technology has prompted a profound revision of the epidemiology and the causes of CKD in children, supporting the hypothesis that CKD is much more frequent than currently reported in children and adolescents. This acquired knowledge will eventually converge in the identification of the molecular pathways and cellular response to damage, with new specific therapeutic targets to control disease progression and clinical features of children with CKD. In this review, we will focus on recent innovations in the field of pediatric CKD and in particular those where advances in knowledge have become available in the last years, with the aim of providing a new perspective on CKD in children and adolescents.

6.
Front Immunol ; 14: 1194988, 2023.
Article En | MEDLINE | ID: mdl-37868987

Mononuclear phagocytes (MP), i.e., monocytes, macrophages, and dendritic cells (DCs), are essential for immune homeostasis via their capacities to clear pathogens, pathogen components, and non-infectious particles. However, tissue injury-related changes in local microenvironments activate resident and infiltrating MP towards pro-inflammatory phenotypes that contribute to inflammation by secreting additional inflammatory mediators. Efficient control of injurious factors leads to a switch of MP phenotype, which changes the microenvironment towards the resolution of inflammation. In the same way, MP endorses adaptive structural responses leading to either compensatory hypertrophy of surviving cells, tissue regeneration from local tissue progenitor cells, or tissue fibrosis and atrophy. Under certain circumstances, MP contribute to the reversal of tissue fibrosis by clearance of the extracellular matrix. Here we give an update on the tissue microenvironment-related factors that, upon tissue injury, instruct resident and infiltrating MP how to support host defense and recover tissue function and integrity. We propose that MP are not intrinsically active drivers of organ injury and dysfunction but dynamic amplifiers (and biomarkers) of specific tissue microenvironments that vary across spatial and temporal contexts. Therefore, MP receptors are frequently redundant and suboptimal targets for specific therapeutic interventions compared to molecular targets upstream in adaptive humoral or cellular stress response pathways that influence tissue milieus at a contextual level.


Macrophages , Monocytes , Humans , Fibrosis , Inflammation , Atrophy
7.
Bio Protoc ; 13(16): e4757, 2023 Aug 20.
Article En | MEDLINE | ID: mdl-37638296

Kidney diseases are a global health concern. Modeling of kidney disease for translational research is often challenging because of species specificities or the postmitotic status of kidney epithelial cells that make primary cultures, for example podocytes. Here, we report a protocol for preparing primary cultures of podocytes based on the isolation and in vitro propagation of immature kidney progenitor cells subsequently differentiated into mature podocytes. This protocol can be useful for studying physiology and pathophysiology of human kidney progenitors and to obtain differentiated podocytes for modeling podocytopathies and other kidney disorders involving podocytes.

8.
Am J Physiol Cell Physiol ; 325(4): C849-C861, 2023 10 01.
Article En | MEDLINE | ID: mdl-37642236

Polyploidization of tubular cells (TC) is triggered by acute kidney injury (AKI) to allow survival in the early phase after AKI, but in the long run promotes fibrosis and AKI-chronic kidney disease (CKD) transition. The molecular mechanism governing the link between polyploid TC and kidney fibrosis remains to be clarified. In this study, we demonstrate that immediately after AKI, expression of cell cycle markers mostly identifies a population of DNA-damaged polyploid TC. Using transgenic mouse models and single-cell RNA sequencing we show that, unlike diploid TC, polyploid TC accumulate DNA damage and survive, eventually resting in the G1 phase of the cell cycle. In vivo and in vitro single-cell RNA sequencing along with sorting of polyploid TC shows that these cells acquire a profibrotic phenotype culminating in transforming growth factor (TGF)-ß1 expression and that TGF-ß1 directly promotes polyploidization. This demonstrates that TC polyploidization is a self-sustained mechanism. Interactome analysis by single-cell RNA sequencing revealed that TGF-ß1 signaling fosters a reciprocal activation loop among polyploid TC, macrophages, and fibroblasts to sustain kidney fibrosis and promote CKD progression. Collectively, this study contributes to the ongoing revision of the paradigm of kidney tubule response to AKI, supporting the existence of a tubulointerstitial cross talk mediated by TGF-ß1 signaling produced by polyploid TC following DNA damage.NEW & NOTEWORTHY Polyploidization in tubular epithelial cells has been neglected until recently. Here, we showed that polyploidization is a self-sustained mechanism that plays an important role during chronic kidney disease development, proving the existence of a cross talk between infiltrating cells and polyploid tubular cells. This study contributes to the ongoing revision of kidney adaptation to injury, posing polyploid tubular cells at the center of the process.


Acute Kidney Injury , Transforming Growth Factor beta1 , Animals , Mice , Transforming Growth Factor beta1/genetics , Acute Kidney Injury/genetics , Epithelial Cells , Polyploidy , Fibrosis
10.
J Am Soc Nephrol ; 34(9): 1513-1520, 2023 09 01.
Article En | MEDLINE | ID: mdl-37428955

SIGNIFICANCE STATEMENT: We hypothesized that triple therapy with inhibitors of the renin-angiotensin system (RAS), sodium-glucose transporter (SGLT)-2, and the mineralocorticoid receptor (MR) would be superior to dual RAS/SGLT2 blockade in attenuating CKD progression in Col4a3 -deficient mice, a model of Alport syndrome. Late-onset ramipril monotherapy or dual ramipril/empagliflozin therapy attenuated CKD and prolonged overall survival by 2 weeks. Adding the nonsteroidal MR antagonist finerenone extended survival by 4 weeks. Pathomics and RNA sequencing revealed significant protective effects on the tubulointerstitium when adding finerenone to RAS/SGLT2 inhibition. Thus, triple RAS/SGLT2/MR blockade has synergistic effects and might attenuate CKD progression in patients with Alport syndrome and possibly other progressive chronic kidney disorders. BACKGROUND: Dual inhibition of the renin-angiotensin system (RAS) plus sodium-glucose transporter (SGLT)-2 or the mineralocorticoid receptor (MR) demonstrated additive renoprotective effects in large clinical trials. We hypothesized that triple therapy with RAS/SGLT2/MR inhibitors would be superior to dual RAS/SGLT2 blockade in attenuating CKD progression. METHODS: We performed a preclinical randomized controlled trial (PCTE0000266) in Col4a3 -deficient mice with established Alport nephropathy. Treatment was initiated late (age 6 weeks) in mice with elevated serum creatinine and albuminuria and with glomerulosclerosis, interstitial fibrosis, and tubular atrophy. We block-randomized 40 male and 40 female mice to either nil (vehicle) or late-onset food admixes of ramipril monotherapy (10 mg/kg), ramipril plus empagliflozin (30 mg/kg), or ramipril plus empagliflozin plus finerenone (10 mg/kg). Primary end point was mean survival. RESULTS: Mean survival was 63.7±10.0 days (vehicle), 77.3±5.3 days (ramipril), 80.3±11.0 days (dual), and 103.1±20.3 days (triple). Sex did not affect outcome. Histopathology, pathomics, and RNA sequencing revealed that finerenone mainly suppressed the residual interstitial inflammation and fibrosis despite dual RAS/SGLT2 inhibition. CONCLUSION: Experiments in mice suggest that triple RAS/SGLT2/MR blockade may substantially improve renal outcomes in Alport syndrome and possibly other progressive CKDs because of synergistic effects on the glomerular and tubulointerstitial compartments.


Diabetes Mellitus, Type 2 , Nephritis, Hereditary , Renal Insufficiency, Chronic , Animals , Female , Male , Mice , Antihypertensive Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Fibrosis , Glucose Transport Proteins, Facilitative/pharmacology , Glucose Transport Proteins, Facilitative/therapeutic use , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/genetics , Nephritis, Hereditary/pathology , Ramipril/therapeutic use , Receptors, Mineralocorticoid , Renal Insufficiency, Chronic/drug therapy , Renin-Angiotensin System , Sodium , Sodium-Glucose Transporter 2/pharmacology , Sodium-Glucose Transporter 2/therapeutic use
11.
Kidney Int ; 104(1): 33-35, 2023 07.
Article En | MEDLINE | ID: mdl-37349059

The role of parietal epithelial cells (PECs) in kidney function and disease was recently revisited. Building on previous studies of human kidney tissue, in the current issue, Liu et al. further characterize PECs using single-cell RNA sequencing data and confirm the crucial pathophysiological role of PECs in murine kidney biology as a reservoir for different types of progenitors.


Kidney Glomerulus , Podocytes , Humans , Mice , Animals , Podocytes/physiology , Epithelial Cells/physiology , Kidney
12.
Biomedicines ; 11(4)2023 Mar 28.
Article En | MEDLINE | ID: mdl-37189664

BACKGROUND: Identifying acute kidney injury (AKI) within few hours of onset is certainly helpful. However, early prediction of a long-term eGFR decline may be an even more important goal. Our aim was to identify and compare serum [creatinine, kineticGFR, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL)] and urinary (NephroCheck, NGAL, proteinuria, albuminuria, acantocytes at urinary sediment) predictors of AKI that might efficiently predict long-term GFR decline after robotic Nephron-Spearing Surgery (rNSS). METHODS: Monocentric prospective observational study. Patients scheduled for rNSS for suspected localized Renal Cell Carcinoma from May 2017 to October 2017 were enrolled. Samples were collected preoperatively and postoperatively (timepoints: 4 h, 10 h, 24 h, 48 h), while kidney function was re-assessed up to 24 months. RESULTS: 38 patients were included; 16 (42%) developed clinical AKI. The eGFR decline at 24 months was more pronounced after postoperative AKI (-20.75 vs. -7.20, p < 0.0001). KineticGFR at 4 h (p = 0.008) and NephroCheck at 10 h (p = 0.001) were, at multivariable linear regression analysis, efficient predictors of post-operative AKI and long-term eGFR decline if compared to creatinine (R2 0.33 vs. 0.04). CONCLUSIONS: NephroCheck and kineticGFR have emerged as promising noninvasive, accurate, and early biomarkers of postoperative AKI and long-term GFR decline after rNSS. Combining NephroCheck and kineticGFR in clinical practice would allow to identify high risk of postoperative AKI and long-term GFR decline as early as 10 h after surgery.

13.
Int J Mol Sci ; 24(9)2023 May 04.
Article En | MEDLINE | ID: mdl-37175947

Chronic kidney disease (CKD) is a constantly growing global health burden, with more than 840 million people affected worldwide. CKD presents sex disparities in the pathophysiology of the disease, as well as in the epidemiology, clinical manifestations, and disease progression. Overall, while CKD is more frequent in females, males have a higher risk to progress to end-stage kidney disease. In recent years, numerous studies have highlighted the role of sex hormones in the health and diseases of several organs, including the kidney. In this review, we present a clinical overview of the sex-differences in CKD and a selection of prominent kidney diseases causing CKD: lupus nephritis, diabetic kidney disease, IgA nephropathy, and autosomal dominant polycystic kidney disease. We report clinical and experimental findings on the role of sex hormones in the development of the disease and its progression to end-stage kidney disease.


Diabetic Nephropathies , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Male , Female , Humans , Kidney , Renal Insufficiency, Chronic/epidemiology , Diabetic Nephropathies/epidemiology , Gonadal Steroid Hormones , Disease Progression
14.
Nephrol Dial Transplant ; 38(Supplement_2): ii50-ii57, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37218706

The management of immunoglobulin A nephropathy, membranous nephropathy, lupus nephritis, anti-neutrophil cytoplasmic antibody-associated vasculitis, C3 glomerulonephritis, autoimmune podocytopathies and other immune-mediated glomerular disorders is focused on two major treatment goals, preventing overall mortality and the loss of kidney function. Since minimizing irreversible kidney damage best serves both goals, the management of immune-mediated kidney disorders must focus on the two central pathomechanisms of kidney function decline, i.e., controlling the underlying immune disease process (e.g. with immunotherapies) and controlling the non-immune mechanisms of chronic kidney disease (CKD) progression. Here we review the pathophysiology of these non-immune mechanisms of CKD progression and discuss non-drug and drug interventions to attenuate CKD progression in immune-mediated kidney disorders. Non-pharmacological interventions include reducing salt intake, normalizing body weight, avoiding superimposed kidney injuries, smoking cessation and regular physical activity. Approved drug interventions include inhibitors of the renin-angiotensin-aldosterone system and sodium-glucose cotransporter-2. Numerous additional drugs to improve CKD care are currently being tested in clinical trials. Here we discuss how and when to use these drugs in the different clinical scenarios of immune-mediated kidney diseases.


Glomerulonephritis, IGA , Glomerulonephritis, Membranous , Glomerulonephritis , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/therapy , Kidney , Glomerulonephritis/drug therapy , Glomerulonephritis/etiology , Glomerulonephritis, Membranous/drug therapy
15.
Nephrol Dial Transplant ; 38(Supplement_2): ii3-ii10, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37218714

Glomerulonephritis (GN) is a diverse group of immune-mediated disorders. Currently, GN is classified largely by histological patterns that are difficult to understand and teach, and most importantly, do not indicate treatment choices. Indeed, altered systemic immunity is the primary pathogenic process and the key therapeutic target in GN. Here, we apply a conceptual framework of immune-mediated disorders to GN guided by immunopathogenesis and hence immunophenotyping: (i) infection-related GN require pathogen identification and control; (ii) autoimmunity-related GN, defined by presence of autoantibodies and (iii) alloimmunity-related GN in transplant recipients both require the suppression of adaptive immunity in lymphoid organs and bone marrow; (iv) autoinflammation-related GN, e.g. inborn errors of immunity diagnosed by genetic testing, requires suppression of single cytokine or complement pathways; and (v) Monoclonal gammopathy-related GN requires B or plasma cell clone-directed therapy. A new GN classification should include disease category, immunological activity to tailor the use of the increasing number of immunomodulatory drugs, and chronicity to trigger standard chronic kidney disease care including the evolving spectrum of cardio-renoprotective drugs. Certain biomarkers allow diagnosis and the assessment of immunological activity and disease chronicity without kidney biopsy. The use of these five GN categories and a therapy-focused GN classification is likely to overcome some of the existing hurdles in GN research, management and teaching by reflecting disease pathogenesis and guiding the therapeutic approach.


Glomerulonephritis , Renal Insufficiency, Chronic , Humans , Glomerulonephritis/diagnosis , Glomerulonephritis/etiology , Glomerulonephritis/therapy , Biomarkers , Autoantibodies , Nephrectomy
16.
J Am Soc Nephrol ; 34(3): 394-411, 2023 03 01.
Article En | MEDLINE | ID: mdl-36857499

SIGNIFICANCE STATEMENT: Cells undergoing necrosis release extracellular high mobility group box (HMGB)-1, which triggers sterile inflammation upon AKI in mice. Neither deletion of HMGB1 from tubular epithelial cells, nor HMGB1 antagonism with small molecules, affects initial ischemic tubular necrosis and immediate GFR loss upon unilateral ischemia/reperfusion injury (IRI). On the contrary, tubular cell-specific HMGB1 deficiency, and even late-onset pharmacological HMGB1 inhibition, increased functional and structural recovery from AKI, indicating that intracellular HMGB1 partially counters the effects of extracellular HMGB1. In vitro studies indicate that intracellular HMGB1 decreases resilience of tubular cells from prolonged ischemic stress, as in unilateral IRI. Intracellular HMGB1 is a potential target to enhance kidney regeneration and to improve long-term prognosis in AKI. BACKGROUND: Late diagnosis is a hurdle for treatment of AKI, but targeting AKI-CKD transition may improve outcomes. High mobility group box-1 (HMGB1) is a nuclear regulator of transcription and a driver of necroinflammation in AKI. We hypothesized that HMGB1 would also modulate AKI-CKD transition in other ways. METHODS: We conducted single-cell transcriptome analysis of human and mouse AKI and mouse in vivo and in vitro studies with tubular cell-specific depletion of Hmgb1 and HMGB1 antagonists. RESULTS: HMGB1 was ubiquitously expressed in kidney cells. Preemptive HMGB1 antagonism with glycyrrhizic acid (Gly) and ethyl pyruvate (EP) did not affect postischemic AKI but attenuated AKI-CKD transition in a model of persistent kidney hypoxia. Consistently, tubular Hmgb1 depletion in Pax8 rtTA, TetO Cre, Hmgb1fl/fl mice did not protect from AKI, but from AKI-CKD transition. In vitro studies confirmed that absence of HMGB1 or HMGB1 inhibition with Gly and EP does not affect ischemic necrosis of growth-arrested differentiated tubular cells but increased the resilience of cycling tubular cells that survived the acute injury to oxidative stress. This effect persisted when neutralizing extracellular HMGB1 with 2G7. Consistently, late-onset HMGB1 blockade with EP started after the peak of ischemic AKI in mice prevented AKI-CKD transition, even when 2G7 blocked extracellular HMGB1. CONCLUSION: Treatment of AKI could become feasible when ( 1 ) focusing on long-term outcomes of AKI; ( 2 ) targeting AKI-CKD transition with drugs initiated after the AKI peak; and ( 3 ) targeting with drugs that block HMGB1 in intracellular and extracellular compartments.


Acute Kidney Injury , HMGB1 Protein , Renal Insufficiency, Chronic , Humans , Animals , Mice , Kidney , Regeneration , Epithelial Cells , Oxidative Stress , Glycyrrhizic Acid
17.
J Am Soc Nephrol ; 34(4): 706-720, 2023 04 01.
Article En | MEDLINE | ID: mdl-36753701

SIGNIFICANCE STATEMENT: To optimize the diagnosis of genetic kidney disorders in a cost-effective manner, we developed a workflow based on referral criteria for in-person evaluation at a tertiary center, whole-exome sequencing, reverse phenotyping, and multidisciplinary board analysis. This workflow reached a diagnostic rate of 67%, with 48% confirming and 19% modifying the suspected clinical diagnosis. We obtained a genetic diagnosis in 64% of children and 70% of adults. A modeled cost analysis demonstrated that early genetic testing saves 20% of costs per patient. Real cost analysis on a representative sample of 66 patients demonstrated an actual cost reduction of 41%. This workflow demonstrates feasibility, performance, and economic effect for the diagnosis of genetic kidney diseases in a real-world setting. BACKGROUND: Whole-exome sequencing (WES) increases the diagnostic rate of genetic kidney disorders, but accessibility, interpretation of results, and costs limit use in daily practice. METHODS: Univariable analysis of a historical cohort of 392 patients who underwent WES for kidney diseases showed that resistance to treatments, familial history of kidney disease, extrarenal involvement, congenital abnormalities of the kidney and urinary tract and CKD stage ≥G2, two or more cysts per kidney on ultrasound, persistent hyperechoic kidneys or nephrocalcinosis on ultrasound, and persistent metabolic abnormalities were most predictive for genetic diagnosis. We prospectively applied these criteria to select patients in a network of nephrology centers, followed by centralized genetic diagnosis by WES, reverse phenotyping, and multidisciplinary board discussion. RESULTS: We applied this multistep workflow to 476 patients with eight clinical categories (podocytopathies, collagenopathies, CKD of unknown origin, tubulopathies, ciliopathies, congenital anomalies of the kidney and urinary tract, syndromic CKD, metabolic kidney disorders), obtaining genetic diagnosis for 319 of 476 patients (67.0%) (95% in 21 patients with disease onset during the fetal period or at birth, 64% in 298 pediatric patients, and 70% in 156 adult patients). The suspected clinical diagnosis was confirmed in 48% of the 476 patients and modified in 19%. A modeled cost analysis showed that application of this workflow saved 20% of costs per patient when performed at the beginning of the diagnostic process. Real cost analysis of 66 patients randomly selected from all categories showed actual cost reduction of 41%. CONCLUSIONS: A diagnostic workflow for genetic kidney diseases that includes WES is cost-saving, especially if implemented early, and is feasible in a real-world setting.


Renal Insufficiency, Chronic , Urinary Tract , Adult , Infant, Newborn , Humans , Child , Workflow , Kidney , Genetic Testing , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics
18.
Nat Rev Immunol ; 23(7): 453-471, 2023 07.
Article En | MEDLINE | ID: mdl-36635359

'Glomerulonephritis' (GN) is a term used to describe a group of heterogeneous immune-mediated disorders characterized by inflammation of the filtration units of the kidney (the glomeruli). These disorders are currently classified largely on the basis of histopathological lesion patterns, but these patterns do not align well with their diverse pathological mechanisms and hence do not inform optimal therapy. Instead, we propose grouping GN disorders into five categories according to their immunopathogenesis: infection-related GN, autoimmune GN, alloimmune GN, autoinflammatory GN and monoclonal gammopathy-related GN. This categorization can inform the appropriate treatment; for example, infection control for infection-related GN, suppression of adaptive immunity for autoimmune GN and alloimmune GN, inhibition of single cytokines or complement factors for autoinflammatory GN arising from inborn errors in innate immunity, and plasma cell clone-directed or B cell clone-directed therapy for monoclonal gammopathies. Here we present the immunopathogenesis of GN and immunotherapies in use and in development and discuss how an immunopathogenesis-based GN classification can focus research, and improve patient management and teaching.


Glomerulonephritis , Humans , Glomerulonephritis/therapy , Glomerulonephritis/etiology , Adaptive Immunity , Immunity, Innate , Cytokines , Immunotherapy
19.
Nephron ; 147(6): 337-350, 2023.
Article En | MEDLINE | ID: mdl-36543152

BACKGROUND: Haemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by haemolytic anaemia, thrombocytopenia, and acute kidney injury. It represents the most frequent cause of acute kidney failure in paediatric age. HUS includes acquired types, such as post-infectious forms, and inherited types. If not promptly recognized, HUS still has high mortality and morbidity, with disabling long-term sequelae. METHODS: Children diagnosed with HUS hospitalized between January 2010 and July 2021 at Meyer Children's Hospital were retrospectively studied. RESULTS: We selected 33 patients (M:F = 15:18) with a median age of 40 months (range 12-180 months). Twenty-eight cases (84.8%) were classified as acquired HUS: Shiga-like toxin Escherichia coli-related-HUS (STEC-HUS) was diagnosed in 26 patients (78.8%), while other 2 patients had HUS secondary to Streptococcus pneumoniae infections (3%) and hematopoietic stem cell transplantation (3%), each one. Five cases (15.1%) were classified as hereditary HUS: 4 patients (12.1%) presented inherited complement disorders (atypical HUS); 1 patient (3%) was diagnosed with cobalamin C deficiency. Diarrhoea was the most rated symptom (72.7%), mainly in STEC-HUS forms. In hereditary HUS, kidney involvement manifestations prevailed. Hypertension was present in 54.5% of total cases. Hypocomplementemia was present in 48.5% of patients; 30.3% of patients needed hospitalization in paediatric intensive care unit (PICU). Early hypertension and hypocomplementemia resulted to be related to the disease severity for either acute phase or long-term outcome. Leucocytosis, thrombocytopenia, and worsen renal function indices were related to PICU hospitalization. Overall, the outcome was good: long-term complications persisted in 18.2% of cases; 1 patient developed kidney failure; no patient died. CONCLUSIONS: HUS is a multifactorial disease mostly affecting children between 3 and 5 years old. Hypertension, leucocytosis, hypocomplementemia, thrombocytopenia, increased renal function indices, and extrarenal manifestations are risk factors for the worst outcome.


Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , Hypertension , Shiga-Toxigenic Escherichia coli , Child , Humans , Child, Preschool , Retrospective Studies , Atypical Hemolytic Uremic Syndrome/complications , Acute Kidney Injury/etiology , Hypertension/complications , Hospitals
20.
Nephrol Dial Transplant ; 38(1): 93-105, 2023 Jan 23.
Article En | MEDLINE | ID: mdl-36102665

BACKGROUND: Cholesterol crystal (CC) embolism causes acute kidney injury (AKI) and ischaemic cortical necrosis associated with high mortality. We speculated that sustaining the fibrinolytic system with Glu-plasminogen (Glu-Plg) could be a safe way to attenuate AKI and prevent ischaemic infarction upon CC embolism. METHODS: We induced CC embolism by injecting CC into the left kidney artery of C57BL/6J mice. The primary endpoint was glomerular filtration rate (GFR). RESULTS: Starting as early as 2 h after CC embolism, thrombotic angiopathy progressed gradually in the interlobular, arcuate and interlobar arteries. This was associated with a decrease of GFR reaching a peak at 18 h, i.e. AKI, and progressive ischaemic kidney necrosis developing between 12-48 h after CC injection. Human plasma Glu-Plg extracts injected intravenously 4 h after CC embolism attenuated thrombotic angiopathy, GFR loss as well as ischaemic necrosis in a dose-dependent manner. No bleeding complications occurred after Glu-Plg injection. Injection of an intermediate dose (0.6 mg/kg) had only a transient protective effect on microvascular occlusions lasting for a few hours without a sustained protective effect on AKI at 18-48 h or cortical necrosis, while 1.5 mg/kg were fully protective. Importantly, no bleeding complications occurred. CONCLUSIONS: These results provide the first experimental evidence that Glu-Plg could be an innovative therapeutic strategy to attenuate thrombotic angiopathy, AKI, kidney necrosis and potentially other clinical manifestations of CC embolism syndrome.


Acute Kidney Injury , Embolism , Thrombosis , Humans , Mice , Animals , Plasminogen , Mice, Inbred C57BL , Kidney , Infarction , Cholesterol , Necrosis
...